325. Molecular Polarisability. Chloroform as a Solvent for the Determination of Molar Kerr Constants of Solutes.

By R. J. W. LE Fèvre and A. J. WILLIAMS.

The apparent values of the molar Kerr constants and dipole moments of two polar, and five ordinarily non-polar, solutes in chloroform are reported and considered in relation to the corresponding data obtained in carbon tetrachloride. Results suggest that chloroform has a limited usefulness for the estimation of principal polarisabilities of strongly polar species such as chloro- and nitro-benzene, but with other solutes, such as benzene, naphthalene, carbon disulphide, etc., unavoidable experimental errors are evidently liable to introduce unpredictable uncertainties in the interpretation of measurements by our usual methods of calculation.

THIS work originated with the question: can useful measurements of molar Kerr constants be made in polar media? It became necessary because the applicability of molecular polarisability ¹ to stereochemistry was obviously limited while only solutions in non-polar media could be examined, since many interesting compounds are insoluble in such liquids. Chloroform was selected for test because of its satisfactory solvent powers for a wide range of substances. Our plan therefore has been to apply standard techniques to seven solutes in this solvent, and to compare results so secured with others already known from work with carbon tetrachloride, benzene hexane, etc. The present paper logically follows that by Armstrong et $al_{,2}$ which dealt with binary mixtures of non-polar components. Cases of polar solutes in non-polar solvents have previously been discussed by Le Fèvre and Le Fèvre ³ and by Buckingham.⁴

- ¹ Le Fèvre and Le Fèvre, Rev. Pure Appl. Chem., 1955, 5, 261.
- ² Armstrong, Aroney, Le Fèvre, Le Fèvre, and Smith, J., 1958, 1474.
 ³ Le Fèvre and Le Fèvre, J., 1953, 4041; 1954, 1577; 1955, 2750.
 ⁴ Buckingham, Trans. Faraday Soc., 1956, 52, 611.

EXPERIMENTAL

Materials, Apparatus, etc.-Solutes were dried and redistilled or recrystallised, as appropriate, immediately before their solutions were prepared. Bulk supplies of chloroform were at first treated as specified by Vogel.⁵ Later, when the low electric birefringence of ethanol (commonly present in commercial chloroform) became known,⁶ we found that 24 hours over calcium chloride followed by fractionation through a 1 m. column packed with glass helices produced a solvent satisfactory for present purposes. Apparatus already described 1,3,7,8 for measurements of Kerr effects and dielectric constants has been used without change except for minor alterations due to the electrical and optical properties of chloroform. Observations are listed in Table 1 under the headings: w_2 , weight fractions; ε , dielectric constants; d, densities; and ΔB and $\Delta n_{\rm n}$, increments in the Kerr constant and refractive index (Na light) from solvent to solutions. Subsequent calculations of apparent polarisations, moments, and molar Kerr constants at infinite dilution are given in Tables 2 and 3. Appropriate data for chloroform as a solvent at 25° and with $\lambda = 5893$ Å are: $\varepsilon = 4.724$, H = 2.040, ${}_{8}K_{1} = -0.1474 \times 10^{-12}$, d = 1.4790, J = 0.2974, $p_{1} = 0.37447$, $n_{D} = 1.4430$, $B = -3.22 \times 10^{-7}$, C = 0.04486. These, and other symbols used later, are explained in ref. 1, p. 283, and ref. 8, p. 56.

DISCUSSION

Observed Molar Kerr Constants.-In all cases except that of naphthalene the values of apparent $\infty(mK_2)$ of Table 3 are algebraically lower than those obtained before ^{1,2,9} with carbon tetrachloride as solvent:

Solute	C ₆ H ₆	C ₆ H ₅ Cl	C ₆ H ₅ ·NO ₂	$C_{10}H_8$	C14H10	CS_2	CCl
$\infty (_{\rm m}K_2)_{\rm CCl_4} \times 10^{12}$	7.2	145	1073	48.1	82.6	27.8	1.1
Reference	1	1	1	1	9	2	1
$\infty (_{\mathrm{m}}K_{\mathrm{2}})_{\mathrm{CHCl}_{\mathrm{2}}} \times 10^{12} \ldots$	-5.2	101.5	744	51.4	71 ·0	17.0	-7.1

In ref. 2 it was demonstrated that a molecular polarisability semi-axis, as measured by experiment, appears to be influenced by the refractive index of the medium and by a " shape factor " k_i for the solute concerned; equations of the type

$$b_{i}^{\text{soln}}/b_{i}^{\text{vapour}} = 1 - K(n_{1}^{2} - 1)(0.333 - k_{i})/(n_{1}^{2} + 2)$$

(in which K could be 1, n_1 , or n_1^2) were shown to represent this phenomenon adequately enough to forecast the variations of the molar Kerr constants of non-polar substances from solvent to solvent. Accordingly, since the refractive indexes of carbon tetrachloride and chloroform are about the same $(1.4575 \text{ and } 1.4430 \text{ respectively at } 25^\circ)$, so should be the semi-axes of a molecule dissolved in each of these liquids, provided the structure (shape) is similar in the two environments. As an initial step, therefore, we assume that the anisotropy term θ_1 (see ref. 1, p. 270, for definition) for a given solute in carbon tetrachloride is an acceptable approximation for the θ_1 of that solute when in chloroform.

The anisotropy terms for chloro- and nitro-benzene in carbon tetrachloride have been reported by Le Fèvre and Rao ¹⁰ as 4.29×10^{-35} and 5.57×10^{-35} ; from the present paper, and other details in ref. 10, it follows that the "dipole terms" θ_2 in the two media are in the ratios, for chlorobenzene 19.9/30.2 = 0.66, and for nitrobenzene, 171/250 = 0.68. According to Le Fèvre and Le Fèvre,³ these ratios should resemble those for μ^2_{CHCL}/μ^2_{COL} , which are 0.59 with chlorobenzene and 0.62 with nitrobenzene. Agreement is reasonable, in view of the nature of the measurements involved, and in accordance with the idea that apparent moments are much more strongly affected by the medium than are polarisability semi-axes.

- ⁵ Vogel, "Practical Organic Chemistry," Longmans, Green & Co., London, 3rd edn., 1956, p. 176.
 ⁶ Le Fèvre, Le Fèvre, Rao, and Williams, J., 1960, 123.
 ⁷ Buckingham, Chau, Freeman, Le Fèvre, Rao, and Tardif, J., 1956, 1405.
 ⁸ Le Fèvre, "Dipole Moments," Methuen, London, 3rd edn., 1953, p. 45.

- ⁹ Le Fèvre and Le Fèvre, unpublished.
 ¹⁰ Le Fèvre and Rao, J., 1958, 1465.

TABLE 1. Kerr constants, refractivities, dielectric constants, and densities of solutions in chloroform containing weight fractions w_2 of solute at 25°.

				Solute :	Benzene							
$10^5 w_2 \dots$	1468	3612	5647	5990	7108	74	18	10,22	l	11,282	2	
d_4^{25}	1.4641	1.4429	1.4234	1.4200	1.4095	1.4	067	1.381	1	1.3718	3	
$10^4 \Delta n_{\rm D} \ldots$	13	30	47	49	58	6	0	81		89		
$10^{3}w_{2}$	4064	4362	5440 4.491	5794 4.407	0000	4.2	92 40	8040		9708	9 A	,910 .910
105101	11 251	12 296	4.421	4.401	4.909	4.0	40	4.707		4.714	т	215
ε ²⁵	4.147	4.105	3.991									
	w	hence $\Delta \epsilon =$	$-5.95w_{*}$	+ 7.412	a^2 : $\Delta d =$	= -1.0	23w. +	- 0.65	v. ²			
10540	9049	2004	2051	4076	4581	46	26 26	4774	- 2	4828	6	154
$10^{\circ} w_2 \dots 10^{\circ} \Lambda B$	0.218	0.197	0.328	0.404	0.425	0.4	30	0.403		0.393	Ő	.527
$10^{4}\Delta n_{\rm D}$			24	34		_	-					
$10^5 w_2$	6267	6836	7741	8513	9125	98	39	9884		13,545	5 21	1,0 3 0
$10^{7}\Delta B$	0.567	0.654	0.665	0.735	0.780	0.8	35	0.767				
$10^4 \Delta n_D \dots$	52		62			_	-			105		160
whence	$\sum (\Delta B \cdot w_z)$	$\sum w_{2}^{2} = +8$	8·59; or∑	$\Delta B / \sum w$	$_{2} = +8.6$	35; or	$10^7 \Delta B$	= +9	} ∙511	w2 —	11·98u	v ₂ ² ;
			and	$\sum \Delta n / \sum n$	$w_2 = 0.07$	796.						
			Sol	nte Ch	lovohenzer	10						
1 (15	5900	5546	5050	6A	0700011201 09	6578	70	149	-	7062	71	574
d_{2}^{25}	1.4530	1.4521	1.4502	1.4	478 I	.4472	1.4	444	1.	4447	1.4	424
10510	8997	9427	12.031	12.	714 1	2.984	13.	725	-			
d_{4}^{25}	1.4360	1.4338	1.4218	1.4	183 1	•4177	1.4	140				
•			whence	$\sum \Delta d / \sum$	$w_{0} = -0$)·4811						
105.00	5409	5781	8150	<u>ل</u> ر ,لر ، ۱۱		0386	11	695	14	2 5 9 5	17	198
10 w ₂	4.791	4.795	4.821	4.8	21	4.836	4.8	863	4	.876	4.	926
•	1.01	1.100	when	$\sim \Sigma \Lambda a$	$\sum m = 1$.10	-		-	0.0	-	020
			when		$\Delta w_2 = 1$.198			- 0		~ -	
$10^{\circ}w_2$	2151 28	303 3229	3792	5302	5728 t	5068	6127	71	70 c	842	0 1.	1,206
$10_4 \Delta n_D \dots$	30 é	40 45	52	50	71	14	10	0	0	100	,	130
			whenc	$e \Delta n/2$	$w_2 = 0$	1244						
$10^5 w_2 \dots$	2113	3377	3863	54	03	5781	63	28	8	3170	93	386
$10^{7}\Delta B$	0.51	0.74	0.85	1.5	21	1.27	1.	42	_	1.87	2.	12
			when	$\sum \Delta B/$	$\sum w_2 = 2$	2·49						
			Sa	lute Ni	trohomzon	a						
105.00	699	1997	1999	10	19	r 9∩91	94	15	9	507	90	04
$d_{25}^{-\omega_2}$	1.4770	1.4752	1.4746	1.4'	to . 799 1	.4790	24	10	1.4	1712	- 4ε 1.4'	704
$10^4 \Lambda n_{\rm D}$	10	15	18	2	3	24	3	5	1.2	33	1.4	103
$10^5 w_0 \dots$	3483	4443	8126	95	36 1	4.696	0	0				
d425	1.4686	1.4657	1.4573	1.45	534 1	·4390						
$10^4 \Delta n_D \dots$	56	58	113	13	4	200						
		whence Δd	= -0.29	$1w_2 + 0$	$15w_2^2; \Sigma$	$\sum \Delta n / \sum dn$	$w_2 = 0$	·1363				
$10^5 w_0 \dots$	1038	1523	2264	- 228	33	2412	- 29	19				
ε ²⁵	5.054	5.208	5.441	5.4	45 E	5.486	5.6	4 5				
			when	$ce \Sigma \Lambda \epsilon l$	$\Sigma_{W_2} = 3$	1.6.						
10544	961 900	419 5	20 549	504	662 6	103 107 5	70 <i>1</i> 9	79 6	0.0	1005	1175	1996
$10^7 \Lambda B$	0.23 0.23	2 0.45 0	61 0.64	0.64	0.70 0	.73 0	87 0	.99 0	.98	1.01	1.16	1.220
			when		(S 1	05.9	0. 0	00 0	00	1 01	110	1 21
			when		$\Delta w_2 = 1$	05.9						
			Sol	ute: Na	phthalene	;						
105701	1694	1776	2357	205	- (2 (2077	40	na	6	436	•	
d.25	1.4684	1.4679	1.4644	1.46	07 1	4546	1.45	544	1.4	430		
$10^5 w_{\bullet} \dots$	1612	2103	2935	334	7	3426	42	44	5	151	52	13
ε ²⁵	4.654	4.632	4.596	4.5	78 4	.576	4.5	40	4.	504	4.5	501
		whence 2	$\sum \Delta \varepsilon / \sum w_{n}$	= -4.30	$D_{a}; \sum \Delta d/$	$\Sigma w_{n} =$	-0.6	199				
10 ⁵ w,	928	1143	1736	176	9 2	2572	27	54	2'	789	33	15
$10^7 \Delta B$	0.131	0.209	0.319	0.3	6 0	436	0.4	72	õ.	510	0.5	25
$10^{4}\Delta n_{\rm D}$	22	29	45	46		68	7	i T	,	70	ั 8	8
$10^5 w_2$	3506	3978	4053	509	9 5	5532	63	19	79	95 2	0	
$10^{7}\Delta \overline{B}$	0.591	0.663	0.667	0.75	54 0	·831	0.9	19	0٠	984		
$10^4 \Delta n_{\rm D} \dots$	01	103	106	12	0	190	10	1	1	70		
	91	100	100	10.	2	139	10	1	-	10		

TABLE 1. (Continued.)											
$\begin{array}{c} 10^5 w_2 \dots \\ d_4^{25} \dots \\ 10^4 \Delta n_D \dots \\ d_4^{25} \dots \\ 10^5 w_2 \dots \\ 10^4 \Delta n_D \dots \\ 10^5 w_2 \dots \\ \epsilon^{25} \dots \end{array}$	$548 \\ 1.4768 \\ 16 \\ 3158 \\ 1.4649 \\ 110 \\ 2634 \\ 4.633$	$ \begin{array}{r} 1095 \\ 37 \\ 3270 \\ 1.4649 \\ 2845 \\ 4.626 \end{array} $	1434 1.4729 	S 1738 1·4714 60 3578 1·4637 125 4954 4·552	$\begin{array}{c} \text{olute:} I \\ 1789 \\ 1\cdot 4714 \\ 64 \\ 3794 \\ 1\cdot 4623 \\ \hline \\ 5771 \\ 4\cdot 524 \end{array}$	Phenanth 1835 1.4708 62 3996 1.4615 141 6220 4.514	2136 1·4699 78 4036 142	$2325 \\ \\ 82 \\ 4784 \\ 1.4581 \\ 163$	2392 1·4685 88 4895 1·4575	2397 1·4687 86 5437 1·4553 187	2648 1·4676 95 5868 1·4535 202
	whe	nce ∑∆a	$z/\sum w_2 =$	= -3 ·44	; $\sum \Delta d$	$\Sigma w_2 =$	-0.4365	5; $\sum \Delta n / \sum$	$w_{s} = 0.2$	418	
$10^{5}w_{2}$	1020	1039	1428	1517	2464	2661	3505	3632	4349	5383	
10 ΔD	0.12	whe	$\Sigma \Delta$	$B \Sigma_{W}$	- 15.41	· or Σ	\R # /	$5_{20}^{-0.00} = 1$	0.09 5.30	0.91	
				5-1-		., 01 <u>7</u> 1	$\frac{10}{161:1}$	$w_2 = 1$	0.02		
$10^5 w_2 \dots \dots$	3830)	4140	Soli	ite: Cai 7526	bon disi 84	uphide 144	9397	12,6	394	
a_4^{50}	1.407	9	1.4005	1	137	1.4	51	1.4513	1.44	123 30	
$10^5 w_2$	2816	5	43 75		4507	5	721	8279	85	67	
ε ²⁰	4.63	2 ,	4.581	ŝ	1 ·578	4.	540	4.463	4.4	56	
105	0.05	whe	nce $\Delta \Delta$	$\varepsilon/\Delta w_2 =$	= -3·18	$\theta_3; \Delta d =$	= -0.30	$w_2 + 0.1$	4w2 ²		
$10^{9}w_{2}$ $10^{7}\Lambda B$	927		$1382 \\ 0.238$		$2226 \\ 0.261$	23	326 291	2657	32-	40 00	3319 0-378
$10^4 \Delta n_D \dots$	18		24		39	4	41	50	5	8	59
$10^5 w_2 \dots \dots$	3737		4946		5835	68	533	7419	76	51	9349
$10^{4}\Delta n_{\rm D}$	68	÷	0.565 88		105	1	750 19	132	13	28 0	165
_	whence	$\Sigma \Delta B / \Sigma_{i}$	$w_{0} = 11$	•60: or	$\Sigma \Delta B$.	$w_{a}/\Sigma w_{a}^{2}$	= 11.40): and Σ	$\Delta n / \sum w_{n} =$	= 0.1793	100
		_ ,_	-	Solu	te: Carl	bon tetra	chloride	-	/ 2		
$10^{5}w_{2}$	2508	2570) 27	38 3	520	3555	3838	424 9	5312	6543	6573
d ₄ ²⁵			1.48	818			1.4828			1.4854	
$10^{*}\Delta n_{\rm D}$	4 6644	3 7619	2 84	s 79 8	4 842	4 9537	4 10 089	0 13 366	6 14 891	7 16 456	7
d_4^{25}			1.48	873		1.4884		1.4921			
$10^4 \Delta n_D \dots$	7	8	1	0	10	11	14	15	19	21	
$10^{\circ}w_{2}$	3170 4.631	5188 4.57	5 63 5 4.5	70 8 39 4	009 •482	8717 4.474	11,294 4.406	14,786			
· ·····	whence	$e \sum \Delta \varepsilon / \Sigma$	$w_{2} = -$	-2·85;	$\sum \Delta d / \Sigma i$	$v_2 = +0$	D·0984; ∶	and $\sum \Delta n$	$\sum w_2 = 0$	0112	
$10^5 w_2 \dots$	3094	4477	7 54	34 5	999	7213	7906	8568	9708	12,227	12,776
$10^7 \Delta \overline{B} \dots$	0.12	0.19	0.00	25 ()∙30	0.34	0 ·3 9	0.43	0.48	0.60	0.60
1119701	14 745	15.87	5 174	4Z7							
$10^{7}\Delta B$	0.68	0.71	0.9	ŝī							

 TABLE 2. Total polarisations at infinite dilution, and apparent dipole moments, calculated from Table 1.

Solute	$(\alpha \varepsilon_1)_{\forall s = 0}$	$(\beta)_{w_2} = 0$	$_{\infty}P_{2}$ (c.c.)	$R_{\rm D}$ (c.c.)	$\mu_{app.}$ (D)
Benzene	-5.95	-0.695	$28 \cdot 6_3$	25.9	0.3
Chlorobenzene	1.20	-0.325	61·9 [°]	31.7	1.2,
Nitrobenzene	31 ·6	-0.192	$229 \cdot 8$	32.4	3·1,
Naphthalene	-4.31	-0.419	$43 \cdot 3_{5}$	44.3	ca. 0
Phenanthrene	-3.44	-0.292	58.9_{4}	63.5	ca. 0
Carbon disulphide	-3.19	-0.502	$23 \cdot 5_1$	$21 \cdot 3$	0.3_{2}
Carbon tetrachloride	-2.85	0.062	$34 \cdot 1_{2}$	26.6	0.6_{1}

 TABLE 3. Molar Kerr constants and sums of anisotropy and dipole terms at infinite dilution calculated from Tables 1 and 2.

Solute	γ	δ	$_{\infty}(_{ m m}K_2) imes 10^{12}$	$(heta_1+ heta_2) imes 10^{35}$
Benzene	0.055	-2.95	-5.2	-1·2 ₅
Chlorobenzene	0.086	- 6.98	101.5	$24 \cdot 1_{4}$
Nitrobenzene	0.094	32.7	7 43 ·9	176.9
Naphthalene,	0.173	-5.24	51.4	12.2
Phenanthrene	0.241	4.77	71.0	16.9
Carbon disulphide	0.124	-3.54	17.0	4.04
Carbon tetrachloride	0.008	-1.46	-7.0_{8}	-1.6_{8}

Turning now to the five normally non-polar solutes in Tables 2 and 3, we must conclude that in chloroform they exhibit θ_2 terms:

Solute
$$C_6H_6$$
 $C_{10}H_8$ $C_{14}H_{10}$ CS_2 CCl_4
Apparent $\theta_2 \times 10^{35}$ -3.0 $+0.8$ -2.7 -2.6 -1.7

Such features point to the possession by these species of finite dipole moments, and are of interest in relation to previous ¹¹⁻¹³ observations which had also suggested that non-polar solutes might become polar in polar media. The negative signs now noted for these values of θ_{\circ} indicate that the apparent moments are developed in directions roughly perpendicular to the greatest polarisability axis of the dissolved particle, whatever this is—it might be some sort of loose adduct of chloroform with either a distorted or an undistorted form of the non-polar solute. On the probably over-simple assumption that benzene and carbon disulphide (semi-axes \times 10²³: 1·12, 1·12, 0·73₅ and 1·308, 0·558, 0·558 respectively ²) are undistorted and behave independently of the chloroform molecules, dipole moments of 0.3 - 0.4 D would, if acting parallel to the b_3 directions, produce negative θ_2 's about onethird to one-half of those found. With carbon tetrachloride (for which θ_1 is zero ¹⁴) some distortion must be presumed. If μ_{C-Cl} is taken as ca. 1.6 D, then an apparent moment for carbon tetrachloride of 0.6 D implies modification of the tetrahedral model so that three of the Cl-C-Cl angles become 102° ; with the values $b_{\rm L}^{\rm C-Cl} = 0.399 \times 10^{-23}$ and $b_{\rm T}^{\rm C-Cl} =$ $0.185 imes 10^{-23}$, the semi-axes for the distorted molecule would be $0.982 imes 10^{-23}$ (along the line of action of $\mu_{resultant})$ and 1.049×10^{-23} (in the two directions perpendicular to These are to be compared with $b_1 = b_2 = b_3 = 1.02_6 \times 10^{-23}$ ordinarily $\mu_{\text{resultant}}$). determined. The difference, $b_1 - b_2 = -0.067 \times 10^{-23}$, combined with a moment of 0.6 D, leads to a θ_2 term of -0.63×10^{-35} , namely, about one-third of that actually recorded. It seems therefore that either the negativity of our θ_2 values has been overestimated or the apparent moments deduced are too small. The use of chloroform as a solvent in the measurement both of electric double refraction and of dielectric polarisation involves practical difficulties which are not present with the usual non-polar media, although, even in these, moments estimated from orientation polarisations of a few c.c. are notoriously uncertain (ref. 8, p. 25). We suspect the values of $\mu_{apparent}$ more than those of θ_2 ; to accept the former as real and to attempt the extraction of polarisability semi-axes in the usual way is dangerous because $45k^2T^2\theta_2/\mu^2_{apparent}$ is sensitively affected by $\mu^2_{apparent}$, small errors in which are much magnified in the quotient, *i.e.*, in the quantity $2b_1 - b_2 - b_3$.

With chloro- and nitro-benzene, however, the situation is better: using the apparent moments and θ_2 's in Tables 2 and 3, we find semi-axes which are close to those previously noted ¹⁰ in carbon tetrachloride:

	$10^{23}b_1$	$10^{23}b_2$	$10^{23}b_{3}$
C H CI in CHCl ₃	1.53	1.21	0.84
C ₆ C ₁₅ in CCl ₄	1.48	1.26	0.82
CH.NO fin CHCl ₃	1.67	1.06	0.93
C ₆ II ₅ IVO ₂ in CCl ₄	1.62	$1 \cdot 20$	0.86

Apparent Moments of Chloro- and Nitro-benzene in Chloroform.—Values (in D) have been previously reported as: $\mu_{PhCl} = 1.18$; ¹² $\mu_{PhNO_2} = 3.30$, ¹⁵ 3.24, ¹⁶ 3.17, ¹⁷ 3.05, ¹² 3.15. ¹⁸ Although the μ 's (1.2₂ and 3.1₁ D) given in Table 2 for chloro- and nitro-benzene are reconcilable with most of these earlier data, it is nevertheless our experience that the determination of $\mu_{apparent}$ in chloroform is a less reliable procedure generally than when benzene, carbon tetrachloride, etc., are taken as solvents: the cases of naphthalene and

- ¹¹ Le Fèvre and Le Fèvre, J., 1936, 487.
 ¹³ Le Fèvre and Russell, J., 1936, 491.
 ¹³ Holland and Le Fèvre, J., 1950, 2166.
 ¹⁴ Le Fèvre, Le Fèvre, and Rao, J., 1956, 708; Le Fèvre and Le Fèvre, J., 1959, 2670.
 ¹⁵ Hassel and Uhl, Z. phys. Chem., 1930, B, 8, 199.
 ¹⁶ Hassel and Naeshagen, Naturwiss., 1930, 18, 24.
 ¹⁷ Jenkins, Nature, 1934, 123, 106; J., 1934, 482.

- ¹⁷ Jenkins, Nature, 1934, 133, 106; J., 1934, 482.
- 18 Smith and Cleverdon, Trans. Faraday Soc., 1949, 45, 109.

phenanthrene, where R_p 's calculated from the observed n_{12} 's and d_{12} 's inexplicably exceed the $_{\infty}P_2$'s, illustrate one of the uncertainties. This has relevance to the point of the last paragraph. If, *e.g.*, with nitrobenzene, a small change be imagined in $\mu_{apparent}$, recomputation will reveal that a notable alteration follows of the principal polarisabilities, especially of b_2 and b_3 :

μ (D)	$10^{23}b_1$	$10^{23}b_2$	10 ²³ b ₃
3.1	1.67	1.06	0.93
$3 \cdot 2_1$	1.64	1.16	0.86
$3 \cdot 3_1$	1.62	1.22	0.83

Conclusion.—These results suggest that chloroform can be used as solvent for this work only with strongly polar solutes whose apparent moments in chloroform can be measured accurately.

UNIVERSITY OF SYDNEY, N.S.W., AUSTRALIA.

1676

[Received, September 26th, 1960.]