325. Molecular Polarisability. Chloroform as a Solvent for the Determination of Molar Kerr Constants of Solutes.

By R. J. W. Le Fèvre and A. J. Williams.

The apparent values of the molar Kerr constants and dipole moments of two polar, and five ordinarily non-polar, solutes in chloroform are reported and considered in relation to the corresponding data obtained in carbon tetrachloride. Results suggest that chloroform has a limited usefulness for the estimation of principal polarisabilities of strongly polar species such as chloro- and nitro-benzene, but with other solutes, such as benzene, naphthalene, carbon disulphide, etc., unavoidable experimental errors are evidently liable to introduce unpredictable uncertainties in the interpretation of measurements by our usual methods of calculation.

This work originated with the question: can useful measurements of molar Kerr constants be made in polar media? It became necessary because the applicability of molecular polarisability ${ }^{1}$ to stereochemistry was obviously limited while only solutions in non-polar media could be examined, since many interesting compounds are insoluble in such liquids. Chloroform was selected for test because of its satisfactory solvent powers for a wide range of substances. Our plan therefore has been to apply standard techniques to seven solutes in this solvent, and to compare results so secured with others already known from work with carbon tetrachloride, benzene. hexane, etc. The present paper logically follows that by Armstrong et al., ${ }^{2}$ which dealt with binary mixtures of non-polar components. Cases of polar solutes in non-polar solvents have previously been discussed by Le Fèvre and Le Fèvre ${ }^{3}$ and by Buckingham. ${ }^{4}$

[^0]
Experimental

Materials, Apparatus, etc.-Solutes were dried and redistilled or recrystallised, as appropriate, immediately before their solutions were prepared. Bulk supplies of chloroform were at first treated as specified by Vogel. ${ }^{5}$ Later, when the low electric birefringence of ethanol (commonly present in commercial chloroform) became known, ${ }^{6}$ we found that 24 hours over calcium chloride followed by fractionation through a 1 m . column packed with glass helices produced a solvent satisfactory for present purposes. Apparatus already described $1,3,7,8$ for measurements of Kerr effects and dielectric constants has been used without change except for minor alterations due to the electrical and optical properties of chloroform. Observations are listed in Table 1 under the headings: w_{2}, weight fractions; ε, dielectric constants; d, densities; and ΔB and Δn_{D}, increments in the Kerr constant and refractive index (Na light) from solvent to solutions. Subsequent calculations of apparent polarisations, moments, and molar Kerr constants at infinite dilution are given in Tables 2 and 3. Appropriate data for chloroform as a solvent at 25° and with $\lambda=5893 \AA$ are: $\varepsilon=4.724, H=2.040,{ }_{8} K_{1}=-0.1474 \times 10^{-12}, d=1.4790$, $J=0.2974, p_{1}=0.37447, n_{\mathrm{D}}=1.4430, B=-3.22 \times 10^{-7}, C=0.04486$. These, and other symbols used later, are explained in ref. 1, p. 283, and ref. 8, p. 56.

Discussion

Observed Molar Kerr Constants.-In all cases except that of naphthalene the values of apparent $\infty\left({ }_{m} K_{2}\right)$ of Table 3 are algebraically lower than those obtained before ${ }^{1,2,9}$ with carbon tetrachloride as solvent:

Solute	$\mathrm{C}_{6} \mathrm{H}_{6}$	$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Cl}$	$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{NO}_{2}$	$\mathrm{C}_{10} \mathrm{H}_{8}$	$\mathrm{C}_{14} \mathrm{H}_{10}$	CS_{2}	CCl_{4}	
$\infty\left(K_{2}\right)_{\mathrm{CO}_{4}} \times 10^{12} \ldots \ldots .$.	$7 \cdot 2$	145	1073	$48 \cdot 1$	$82 \cdot 6$	$27 \cdot 8$	$1 \cdot 1$	
Reference $\ldots \ldots \ldots \ldots \ldots \ldots$	1	1	1	1	1	9	2	1
$\infty\left(\mathrm{~m}_{2}\right)_{\mathrm{CHCl}_{8}} \times 10^{12}$	\ldots	$-5 \cdot 2$	$101 \cdot 5$	744	$51 \cdot 4$	$71 \cdot 0$	$17 \cdot 0$	$-7 \cdot 1$

In ref. 2 it was demonstrated that a molecular polarisability semi-axis, as measured by experiment, appears to be influenced by the refractive index of the medium and by a "shape factor" k_{i} for the solute concerned; equations of the type

$$
b_{i}^{\text {soln }} / b_{\mathrm{i}}^{\text {vapour }}=1-K\left(n_{1}{ }^{2}-1\right)\left(0.333-k_{\mathrm{i}}\right) /\left(n_{1}{ }^{2}+2\right)
$$

(in which K could be $1, n_{1}$, or $n_{1}{ }^{2}$) were shown to represent this phenomenon adequately enough to forecast the variations of the molar Kerr constants of non-polar substances from solvent to solvent. Accordingly, since the refractive indexes of carbon tetrachloride and chloroform are about the same (1.4575 and 1.4430 respectively at 25°), so should be the semi-axes of a molecule dissolved in each of these liquids, provided the structure (shape) is similar in the two environments. As an initial step, therefore, we assume that the anisotropy term θ_{1} (see ref. 1, p. 270, for definition) for a given solute in carbon tetrachloride is an acceptable approximation for the θ_{1} of that solute when in chloroform.

The anisotropy terms for chloro- and nitro-benzene in carbon tetrachloride have been reported by Le Fèvre and Rao ${ }^{10}$ as 4.29×10^{-35} and 5.57×10^{-35}; from the present paper, and other details in ref. 10, it follows that the "dipole terms" θ_{2} in the two media are in the ratios, for chlorobenzene $19 \cdot 9 / 30 \cdot 2=0 \cdot 66$, and for nitrobenzene, $171 / 250=0 \cdot 68$. According to Le Fèvre and Le Fèvre, ${ }^{3}$ these ratios should resemble those for $\mu^{2} \mathrm{CHO}_{3} / \mu^{2} \mathrm{COI}_{4}$, which are 0.59 with chlorobenzene and 0.62 with nitrobenzene. Agreement is reasonable, in view of the nature of the measurements involved, and in accordance with the idea that apparent moments are much more strongly affected by the medium than are polarisability semi-axes.

[^1]Table 1. Kerr constants, refractivities, dielectric constants, and densities of solutions in chloroform containing weight fractions w_{2} of solute at 25°.

Solute: Benzene									
$10^{5} w_{2} \ldots \ldots$.	1468	3612	5647	5990	7108	7418	10,221	11,282	
$d_{4}{ }^{25} \ldots \ldots \ldots$.	$1 \cdot 4641$	1-4429	1.4234	$1 \cdot 4200$	$1 \cdot 4095$	1.4067	1-3814	1-3718	
$10^{4} \Delta n_{\text {D }}$	13	30	47	49	58	60	81	89	
$10^{5} w_{2}$	4064	4362	5445	5794	6555	6852	8640	9708	9757
ε^{25}..	$4 \cdot 494$	$4 \cdot 478$	$4 \cdot 42 \mathrm{l}$	$\mathbf{4 . 4 0 7}$	$4 \cdot 363$	4.349	4.262	4.217	4.219
$10^{5} w_{2} \ldots \ldots$.	11,251	12,296	15,151						
$\varepsilon^{25} \ldots \ldots \ldots$	4.147	4-105	3.991						
whence $\Delta \varepsilon=-5.95 w_{2}+7.41 w_{2}{ }^{2} ; \Delta d=-1.023 w_{2}+0.65 w_{2}{ }^{2}$									
$10^{5} w_{2} \ldots \ldots$.	2948	3004	3051	4076	4581	4636	4774	4828	6154
$10^{7} \Delta B$	$0 \cdot 218$	0.197	$0 \cdot 328$	$0 \cdot 404$	$0 \cdot 425$	$0 \cdot 430$	$0 \cdot 403$	$0 \cdot 393$	0.527
$10^{4} \Delta n_{\text {D }}$	-	-	24	34	-	-	-	-	-
$10^{5} w_{2}$.	6267	6836	7741	8513	9125	9839	9884	13,545	21,030
$10^{7} \Delta B$	0.567	$0 \cdot 654$	0.665	0.735	$0 \cdot 780$	0.835	$0 \cdot 767$	-	
$10^{4} \Delta n_{\text {D }}$	52		62			-		105	160
$\begin{gathered} \text { whence } \Sigma\left(\Delta B . w_{2}\right) / \sum w_{2}{ }^{2}=+8.59 ; \end{gathered} \begin{gathered} \text { or } \sum \Delta B / \sum w_{2}=+8.65 ; \text { or } 10^{7} \Delta B=+9.511 w_{2}-11.98 w_{2}{ }^{2} ; \\ \text { and } \sum \Delta n / \sum w_{2}=0.0796 . \end{gathered}$									

Solute: Chlorobenzene											
$11^{5} w_{2} \ldots \ldots$.	5299		5546	5950	6402	6578	7042		7062		$75 \% 4$
$d_{4}{ }^{25} \ldots \ldots \ldots$.	1.4530		1.4521	1.4502	1.4478	1.4472	1.4444		1-4447		-4424
$10^{5} w_{2} \ldots \ldots$.	8997		9427	12,031	12,714	12,984	13,725				
$d_{4}{ }^{25}$	1.4360		1.4338	1-4218	$1 \cdot 4183$	$1 \cdot 4177$	1.4140				
whence $\Sigma \Delta d / \sum w_{2}=-0.4811$											
$10^{5} w_{2} \ldots \ldots$.	5403		5781	8159	8170	9386	11,625		12,525		7,128
$\varepsilon^{25} \ldots \ldots \ldots$.	4.791		4.795	4.821	4.821	$4 \cdot 836$	4.863		4.876		4.926
whence $\Sigma \Delta \varepsilon / \Sigma w_{2}=1 \cdot 19_{9}$											
$10^{5} w_{2} \ldots \ldots$.	2151	2803	3229	3792	53025728	6068	6127	7176	8420		11,206
$104 \Delta i_{\text {D }} \ldots$	33	40	45	52	$65 \quad 71$	74	75	86	100		130
whence $\sum \Delta n / \Sigma w_{2}=0 \cdot 1244$											
$10^{5} w_{2} \ldots \ldots$	2113		3377	3863	5403	5781	6328		8170		9386
$10^{7} \Delta B$	0.51		$0 \cdot 74$	$0 \cdot 85$	$1 \cdot 21$	$1 \cdot 27$	1.42		1.87		$2 \cdot 12$
whence $\Sigma \Delta B / \Sigma w_{2}=22.49$											
Solute: Nitrobenzene											
$10^{5} w_{2} \ldots \ldots$.	682		1227	1388	1943	2021	2415		2597		2904
$d_{4}{ }^{25} \ldots \ldots$.	1.4770		1.4752	1.4746	1.4732	1.4729	-		$1 \cdot 4713$		4703
$10^{4} \Delta n_{\text {D }} \ldots$	10		15	18	23	24	35		33		37
$10^{5} w_{2} \ldots \ldots$.	3483		4443	8126	9566	14,696					
$d_{4}{ }^{25} \ldots \ldots \ldots$.	$1 \cdot 4686$		$1 \cdot 4657$	1.4573	1.4534	$1 \cdot 4390$					
$10^{4} \Delta n_{\text {D }} \ldots$	56		58	113	134	200					
whence $\Delta d=-0.291 w_{2}+0.15 w_{2}{ }^{2} ; \Sigma \Delta n / \Sigma w_{2}=0.1363$											
$10^{5} w_{2} \ldots \ldots$.	1038		1523	2264	2283	2412	2919				
$\varepsilon^{25} \ldots \ldots .$.	5.054		5.208	$5 \cdot 441$	$5 \cdot 445$	$5 \cdot 486$	$5 \cdot 645$				
whence $\Sigma \Delta \varepsilon / \Sigma w_{2}=31 \cdot 6_{3}$											
$10^{5} e_{2} \ldots \ldots$	261	290	412	548	$594 \quad 663$	697	$794 \quad 872$	892	1005	1175	51226
$10^{7} \Delta B \quad \ldots$	0.230	$0 \cdot 22$	$0 \cdot 450$	10.64	$0.64 \quad 0.70$	0.73	$0.87 \quad 0.99$	0.98	1.01	$1 \cdot 16$	1-27

whence $\Sigma \Delta B / \Sigma w_{2}=105 \cdot 3$
Solute: Naphthalene

$10^{5} w_{2} \ldots \ldots$	1694	1776	2357	2953	3977	4009	6436	
$d_{4}{ }^{25} \ldots \ldots \ldots$.	1-4684	1.4679	$1 \cdot 4644$	$1 \cdot 4607$	$1 \cdot 4546$	1.4544	$1 \cdot 4397$	
$10^{5} w_{2} \ldots \ldots$.	1612	2103	2935	3347	3426	4244	5151	5213
$\varepsilon^{25} \ldots \ldots \ldots$.	$4 \cdot 654$	$4 \cdot 632$	4.596	$4 \cdot 578$	$4 \cdot 576$	4.540	4.504	4.501
whence $\Sigma \Delta \varepsilon / \Sigma w_{2}=-4.30_{6} ; \Sigma \Delta d / \Sigma w_{2}=-0.6199$								
$10^{5} w_{2} \ldots \ldots$	928	1143	1736	1769	2572	2754	2789	3315
$10^{7} \Delta B$	$0 \cdot 131$	0.209	0.319	0.316	$0 \cdot 436$	$0 \cdot 472$	$0 \cdot 510$	0.525
$10^{4} \Delta n_{\text {D }}$	22	29	45	46	68	71	70	88
$10^{5} w_{2} \ldots \ldots$	3506	3978	4053	5099	5532	6319	7952	
$10^{7} \Delta B$	0.591	0.663	$0 \cdot 667$	0.754	$0 \cdot 831$	0.919	0.984	
$10^{4} \Delta n_{\text {d }}$	91	103	106	132	139	161	170	

whence $\Sigma \Delta B / \Sigma w_{2}=+16.9_{5} ;$ or $\Sigma \Delta B . w_{2} / \Sigma w_{2}^{2}=+16.86 ;$ and $\sum \Delta n / \Sigma w_{2}=0.2508$

Table 1. (Continued.)
Solute: Phenanthrene

	whence $\Sigma \Delta \varepsilon / \sum w_{2}=-3.44 ; \sum \Delta d / \sum w_{2}=-0.4365 ; ~ \sum \Delta n / \sum w_{2}=0.2418$									
$10^{5} w_{2}$	1020	1039	1428	1517	2464	2661	3505	3632	4349	5383
$10^{7} \Delta B$	$0 \cdot 15$	0.18	0.23	$0 \cdot 24$	$0 \cdot 38$	$0 \cdot 41$	0.52	0.55	$0 \cdot 69$	0.81
	whence $\Sigma \Delta B / \Sigma w_{2}=15 \cdot 41$; or $\Sigma \Delta B \cdot w_{2} / \Sigma w_{2}{ }^{2}=15 \cdot 32$									

Solute: Carbon disulphide

$10^{5} w_{2} \ldots \ldots$	3830	4140	7526	8444	9397	12,694
$d_{4}{ }^{25} \ldots \ldots \ldots$	$1 \cdot 4675$	$1 \cdot 4665$	$1 \cdot 4567$	1.4542	$1 \cdot 4513$	$1 \cdot 4423$
$10^{4} \Delta n_{\mathrm{D}} \ldots$	71	75	137	151	169	230
$10^{5} w_{2} \ldots \ldots$	2816	4375	4507	5721	8279	8567
$\varepsilon^{25} \ldots \ldots$.	$4 \cdot 632$	$4 \cdot 581$	$4 \cdot 578$	$4 \cdot 540$	$4 \cdot 463$	$4 \cdot 456$

$10^{5} w_{2} \ldots \ldots$.	927	1382	2226	2326	2657	3240	3319
$10^{7} \Delta \mathcal{B} \quad \ldots$	-	0.238	$0 \cdot 261$	$0 \cdot 291$	-	$0 \cdot 400$	$0 \cdot 378$
$10^{4} \Delta n_{\text {D }} \ldots$	18	24	39	41	50	58	59
$10^{5} w_{2} \ldots \ldots$.	3737	4946	5835	6533	7419	7651	9349
$10^{7} \Delta B \quad \ldots$	$0 \cdot 444$	0.565	$0 \cdot 645$	$0 \cdot 750$	$0 \cdot 859$	$0 \cdot 828$	1.062
$10^{4} \Delta n_{\text {d }}$	68	88	105	119	132	130	165

Solute: Carbon tetrachloride

whence $\Sigma \Delta \varepsilon / \Sigma w_{2}=-2.85 ; ~ \Sigma \Delta d / \Sigma w_{2}=+0.0984 ;$ and $\Sigma \Delta n / \Sigma w_{2}=0.0112$										
$10^{5} w_{2}$	3094	4477	5434	5999	7213	7906	8568	9708	12,227	12,776
$10^{7} \Delta B$	$0 \cdot 12$	$0 \cdot 19$	$0 \cdot 25$	$0 \cdot 30$	0.34	$0 \cdot 39$	$0 \cdot 43$	$0 \cdot 48$	$0 \cdot 60$	$0 \cdot 60$
$10^{5} w_{2} \ldots \ldots$	14,745	15,873	17,427							
$10^{7} \Delta B$	$0 \cdot 68$	$0 \cdot 71$	$0 \cdot 81$							
whence $\Sigma \Delta B / \sum w_{2}=-4 \cdot 70$; or $\sum \Delta B . w_{2} / \Sigma w_{2}{ }^{2}=-4 \cdot 69$										

Table 2. Total polarisations at infinite dilution, and apparent dipole moments, calculated from Table 1.

Solute	$\left(\alpha \varepsilon_{1}\right)_{w_{3}=0}$	$(\beta)_{W_{2}}=0$	${ }_{\infty} P_{2}$ (c.c.)	$R_{\text {D }}$ (c.c.)	$\mu_{\text {app. }}$ (D)
Benzene	-5.95	-0.692	28.6	25.9	$0 \cdot 36$
Chlorobenzene	1.20	-0.325	61.9	$31 \cdot 7$	$1 \cdot 2$
Nitrobenzene	31.6	-0.197	$229 \cdot 8$	$32 \cdot 4$	3-1 ${ }_{1}$
Naphthalene	-4.31	-0.419	$43 \cdot 3_{5}$	$44 \cdot 3$	ca. 0
Phenanthrene	$-3 \cdot 44$	-0.295	$58.9{ }_{4}$	$63 \cdot 5$	$c a .0$
Carbon disulphide	-3.19	-0.207	$23 \cdot 5$	21.3	$0 \cdot 3_{2}$
Carbon tetrachlorid	-2.85	$0 \cdot 067$	$34 \cdot 1{ }_{2}$	26.6	$0 \cdot 6{ }_{1}$

Table 3. Molar Kerr constants and sums of anisotropy and dipole terms at infinite dilution calculated from Tables 1 and 2.

Solute	γ	δ	$\infty\left({ }_{11} K_{2}\right) \times 10^{12}$	$\left(\theta_{1}+\theta_{2}\right) \times 10^{35}$
Benzene	0.055	-2.95	$-5 \cdot 2_{4}$	-1.25
Chlorobenzene	0.086	-6.98	101.5	$24 \cdot 1{ }_{4}$
Nitrobenzene	$0 \cdot 094$	--32.7	$743 \cdot 9$	$176 \cdot 9$
Naphthalene	$0 \cdot 173$	-5.24	51.4	12.2
Phenanthrene.	$0 \cdot 241$	-4.77	71.0	16.9
Carbon disulphide	$0 \cdot 124$	-3.54	17.0	$4 \cdot 0_{4}$
Carbon tetrachloride	0.008	-1.46	-7.08	$-1 \cdot 68$

Turning now to the five normally non-polar solutes in Tables 2 and 3, we must conclude that in chloroform they exhibit θ_{2} terms:

Such features point to the possession by these species of finite dipole moments, and are of interest in relation to previous ${ }^{11-13}$ observations which had also suggested that non-polar solutes might become polar in polar media. The negative signs now noted for these values of θ_{2} indicate that the apparent moments are developed in directions roughly perpendicular to the greatest polarisability axis of the dissolved particle, whatever this is-it might be some sort of loose adduct of chloroform with either a distorted or an undistorted form of the non-polar solute. On the probably over-simple assumption that benzene and carbon disulphide (semi-axes $\times 10^{23}$: $1 \cdot 12,1 \cdot 12,0.73_{5}$ and $1 \cdot 308,0.558,0.558$ respectively ${ }^{2}$) are undistorted and behave independently of the chloroform molecules, dipole moments of $0.3-0.4 \mathrm{D}$ would, if acting parallel to the b_{3} directions, produce negative θ_{2} 's about onethird to one-half of those found. With carbon tetrachloride (for which θ_{1} is zero ${ }^{14}$) some distortion must be presumed. If $\mu_{\mathrm{C}-\mathrm{Cl}}$ is taken as $c a .1 \cdot 6 \mathrm{D}$, then an apparent moment for carbon tetrachloride of 0.6 D implies modification of the tetrahedral model so that three of the $\mathrm{Cl}-\mathrm{C}-\mathrm{Cl}$ angles become 102°; with the values $b_{\mathrm{L}}^{\mathrm{C}-\mathrm{Cl}}=0.399 \times 10^{-23}$ and $b_{\mathrm{T}}^{\mathrm{C}} \mathrm{Cl}=$ 0.185×10^{-23}, the semi-axes for the distorted molecule would be 0.982×10^{-23} (along the line of action of $\mu_{\text {resultant }}$) and 1.049×10^{-23} (in the two directions perpendicular to $\left.\mu_{\text {resultant }}\right)$. These are to be compared with $b_{1}=b_{2}=b_{3}=1.02_{6} \times 10^{-23}$ ordinarily determined. The difference, $b_{1}-b_{2}=-0.067 \times 10^{-23}$, combined with a moment of 0.6 D , leads to a θ_{2} term of -0.63×10^{-35}, namely, about one-third of that actually recorded. It seems therefore that either the negativity of our θ_{2} values has been overestimated or the apparent moments deduced are too small. The use of chloroform as a solvent in the measurement both of electric double refraction and of dielectric polarisation involves practical difficulties which are not present with the usual non-polar media, although, even in these, moments estimated from orientation polarisations of a few c.c. are notoriously uncertain (ref. 8, p. 25). We suspect the values of $\mu_{\text {apparent }}$ more than those of θ_{2}; to accept the former as real and to attempt the extraction of polarisability semi-axes in the usual way is dangerous because $45 k^{2} T^{2} \theta_{2} / \mu_{\text {apparent }}^{2}$ is sensitively affected by $\mu_{\text {apparent }}{ }^{\text {a }}$, small errors in which are much magnified in the quotient, i.e., in the quantity $2 b_{1}-b_{2}-b_{3}$.

With chloro- and nitro-benzene, however, the situation is better: using the apparent moments and θ_{2} 's in Tables 2 and 3 , we find semi-axes which are close to those previously noted ${ }^{\mathbf{1 0}}$ in carbon tetrachloride:

	$10^{23} b_{1}$	$10^{23} b_{2}$	$10^{23} b_{3}$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}\left\{\right.$ in CHCl_{3}	1.53	$1 \cdot 21$	0.84
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ (in $\mathrm{CCl}_{4} \ldots$	1.48	$1 \cdot 26$	$0 \cdot 82$
$\mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{NO}_{2}\left\{\right.$ in CHCl_{3}	1.67	1.06	0.93

Apparent Moments of Chloro- and Nitro-benzene in Chloroform.-Values (in D) have been previously reported as: $\mu_{\mathrm{PhCl}}=1 \cdot 18 ;{ }^{12}{ }_{\mathrm{P}_{\mathrm{PhVO}_{2}}}=3 \cdot 30,{ }^{15} 3 \cdot 24,{ }^{16} 3 \cdot 17,{ }^{17} 3 \cdot 05,{ }^{12} 3 \cdot 15 .{ }^{18}$ Although the μ 's $\left(1 \cdot \cdot_{2}\right.$ and $3 \cdot 1_{1}$ D) given in Table 2 for chloro- and nitro-benzene are reconcilable with most of these earlier data, it is nevertheless our experience that the determination of $\mu_{\text {apparent }}$ in chloroform is a less reliable procedure generally than when benzene, carbon tetrachloride, etc., are taken as solvents: the cases of naphthalene and

[^2]phenanthrene, where R_{p} 's calculated from the observed n_{12} 's and d_{12} 's inexplicably exceed the $\infty_{\infty} P_{2}$'s, illustrate one of the uncertainties. This has relevance to the point of the last paragraph. If, e.g., with nitrobenzene, a small change be imagined in $\mu_{\text {apparent }}$, recomputation will reveal that a notable alteration follows of the principal polarisabilities, especially of b_{2} and b_{3} :

$\mu(\mathrm{D})$	$10^{23} b_{1}$	$10^{23} b_{2}$	$10^{23} b_{3}$
$3 \cdot 1_{1}$	1.67	1.06	0.93
3.2_{1}	1.64	1.16	0.86
3.3_{1}	1.62	1.22	0.83

Conclusion.-These results suggest that chloroform can be used as solvent for this work only with strongly polar solutes whose apparent moments in chloroform can be measured accurately.

University of Sydney, N.S.W., Australia.
[Received, September 26th, 1960.]

[^0]: ${ }^{1}$ Le Fèvre and Le Fèvre, Rev. Pure Appl. Chem., 1955, 5, 261.
 ${ }^{2}$ Armstrong, Aroney, Le Fèvre, Le Fèvre, and Smith, J., 1958, 1474.
 ${ }^{3}$ Le Fèvre and Le Fèvre, J., 1953, 4041; 1954, 1577; 1955, 2750.
 ${ }^{4}$ Buckingham, Trans. Faraday Soc., 1956, 52, 611.

[^1]: 5 Vogel, " Practical Organic Chemistry," Longmans, Green \& Co., London, 3rd edn., 1956, p. 176.
 ${ }^{6}$ Le Fèvre, Le Fèvre, Rao, and Williams, J., 1960, 123.
 7 Buckingham, Chau, Freeman, Le Fèvre, Rao, and Tardif, J., 1956, 1405.
 ${ }^{8}$ Le Fèvre, " Dipole Moments," Methuen, London, 3rd edn., 1953, p. 45.
 ${ }^{9}$ Le Fèvre and Le Fèvre, unpublished.
 ${ }^{10}$ Le Fèvre and Rao, J., 1958, 1465.

[^2]: ${ }^{11}$ Le Fèvre and Le Fèvre, J., 1936, 487.
 ${ }^{13}$ Le Fèvre and Russell, J., 1936, 491.
 ${ }^{13}$ Holland and Le Fèvre, J., 1950, 2166.
 ${ }^{14}$ Le Fèvre, Le Fèvre, and Rao, $J ., 1956,708$; Le Fèvre and Le Fèvre, $J ., 1959,2670$.
 ${ }^{15}$ Hassel and Uhl, Z. phys. Chem., 1930, B, 8, 199.
 ${ }^{14}$ Hassel and Naeshagen, Naturwiss., 1930, 18, 24.
 17 Jenkins, Nature, 1934, 133, 106; J., 1934, 482.
 ${ }^{1 *}$ Smith and Cleverdon, Trans. Faraday Soc., 1949, 45, 109.

